Thrifty Genes, Thrifty Bodies and the Barker Hypothesis
“They have sown the wind, and they shall reap the whirlwind.”
–The Bible (Hosea, 8:7)
In 1962, a geneticist named James Neel first proposed a “thrifty gene” theory to explain why 60% of adult Pima Indians living in the United States have diabetes, and 95% are overweight. Neel’s theory was that populations like the Pimas, that have for millennia relied on farming, hunting and fishing for food, would experience alternating periods of feast and famine. Neel hypothesized that in order to adapt to these extreme changes in caloric needs, people developed a “thrifty gene” that allowed them to store fat during times of plenty so that they would not starve during times of famine.
A similar theory was advanced to explain the high rates of diabetes in people from the Indian subcontinent, once they are exposed to plentiful supplies of food. These was traced by the great Diaspora from central Asia at the end of the last age, when the ancestors of modern Indians and Pakistanis made the great trek through modern Afghanistan into the Indus valley. A journey that had been impossible at the height of the Ice Age and which was still difficult. The idea was that people who could quickly lay down a lot of intra-abdominal fat would have a huge survival advantage.
This is an attractive hypothesis, but here have always been some problems with it:
- The gene or genes would have to be able to work with the environment: the Pimas of Mexico and people living in rural India do not have the high rates of diabetes and obesity
- Despite looking for over 40 years, no such gene has yet been found
- If the thrifty gene is so advantageous, why doesn’t everyone have it?
- Until recently, famines were rare and usually occurred every 100-150 years. As John Speakman has pointed out that would mean that most human populations have experienced at most 100 famine events in the course of their evolutionary history
- Famines do increase mortality but only in about 10% of the population
- In famines most people die of disease rather than starvation, and the worst affected are the young. Having a “thrifty gene” would not help them survive starvation OR disease
- Simple genetic models would suggest that famines would not provide enough selective advantage and there has not been enough time for a “thrifty gene” to have penetrated the population
There could yet be some complex genetic model involving “reserve” genes that appear when needed, or some epigenetic inheritance, but we have no evidence for that either.
A second concept is gaining a lot of traction. It is what is known as the “Thrifty phenotype,” and is part of a larger theory called the “Barker Hypothesis.” I’m going to stick my neck out, and predict that David Barker may receive the Nobel Prize in medicine for his discoveries. They are that important.
Essentially the Barker Hypothesis suggests that in addition to genetic, epigenetic and environmental factors in disease, there is another, and that is the intrauterine environment. The idea is that if a mother is malnourished, she can modify the development of her unborn child. From an evolutionary perspective, her body is preparing the unborn child to survive in an environment where food is in chronic short supply, resulting in the “Thrifty phenotype:” smaller body size, lower metabolic rate and a propensity to be less active.
The problem is this. If you are born with the thrifty phenotype and actually grow up in an affluent environment, you are more likely to develop obesity, diabetes and vascular disease later in life. If true – and virtually all the evidence suggest that it is – then it has serious implications for countries that are transitioning from sparse to better nutrition, and may have contributed to some of our current health problems. Many of us were born to mothers who had poor nutrition, either because of the Great Depression, the Second World War, poverty, or just plain poor information about good nutrition during pregnancy. And now we are reaping the whirlwind.
The hypothesis has become sophisticated. If you are born small or premature, then your liver and kidneys may not have completed their final growth spurt, which might predispose you to metabolic problems and hypertension.
The story of how this all came to light would be worthy of Sherlock Holmes himself.
English counties used to have people who were responsible for providing midwifery services. In the county of Buckinghamshire a single midwife collected data for almost thirty years. Information about the mother, the length and weight of the baby and the weight of the placenta. Information that would be impossible to collect these days. Some civil libertarian somewhere would probably dream up some way of hiding this enormously important information.
David Barker discovered these extraordinarily good records, and then set about finding the adults that these babies had become. And what he found has changed medicine: babies who had small placentas – a good measure of being small or premature – were more likely to develop obesity, diabetes or hypertension as adults. Then he and others turned their attention to other early physical characteristics and found correlations with health later in life. The highest risk of coronary heart disease was seen amongst people who were born small and became heavier during childhood.
The practical implications?
Find out your own birth weight and anything else that you can about your early development.
If you were a very large baby (bigger than nine and a half pounds), it implies that your mother may perhaps have had a metabolic problem. If you were small (less than five and a half pounds), then you should get the regular health checks that we recommend for anyone in a “high risk” group.